The Impact of Large Language Models on Open-Source Innovation: Evidence from GitHub Copilot

Raveesh K. Mayya

Stern School of Business New York University

Joint Work: Doron Yeverechyahu and Gal Oestreicher-Singer Tel Aviv University, Israel

Georgetown-Worldbank Conference on AI, **Washington DC**4th September 2024

Impact of LLM on Productivity

Potential to Enhance Individual Productivity

Whether this will translate to Group Productivity?

(Brynjolfsson et al. 2023; Noe and Zhang 2023; Peng et al. 2023)

Collaboration = f(<iteration>, <origination>)

Iterative Tasks

Interpolative

Thinking

- ➤ Well-Defined Solution Space
- ➤ Inside-the-box Solutions

Origination Tasks

Extrapolative

Thinking

- ➤ Vague Solution Space
- ➤ Out-of-the-Box Solutions

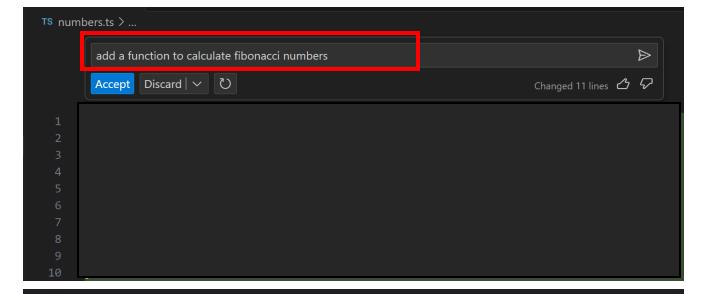
Do LLMs have an asymmetric impact on the 2 types?

Open-Source Innovation

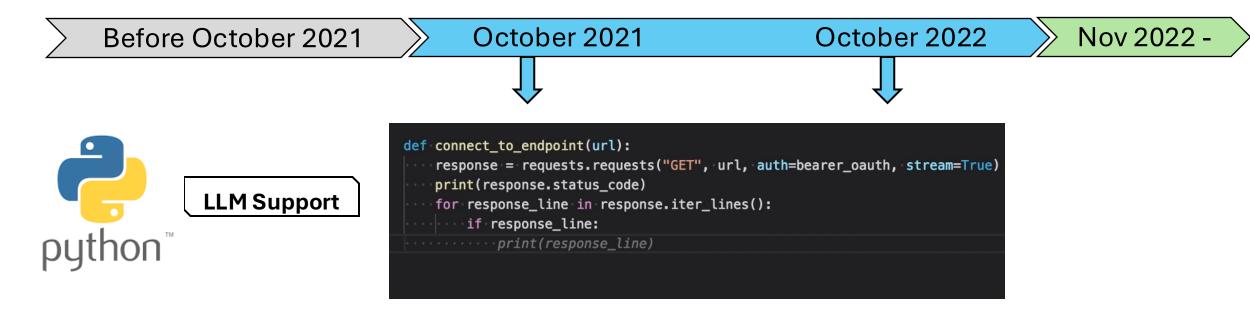
Collaborative Innovation on Public Repositories

Need both "out-of-the-box" and "inside-the-box" thinking

There is an LLM for that :)



GitHub Copilot



Code Generation

Code Completion

Exploiting the LLM Roll-Out


```
if (!group_in
    return 0;

left = 0;
right = group_info->ngroups;
while (!eft < right) {
    unsigned int mid =
    if (grp > GROUP_)
        left = mid
```

Research Questions

RQ1: How do LLMs affect the **volume** of open-source innovation?

RQ2: How do LLMs affect the **type** of innovation in open-source?

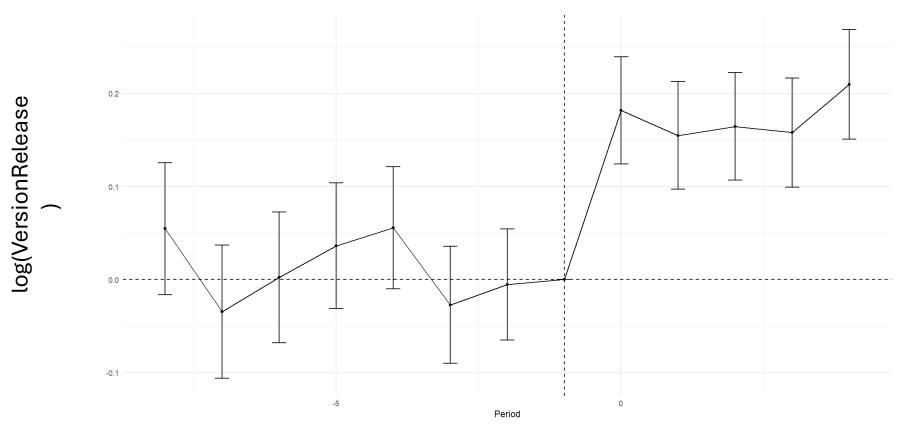
Extrapolative Reasoning

Interpolative Reasoning

Extension: What value do our results have if LLMs gets better? (assumption: Better LLMs \rightarrow enhanced utilization of context)

Data Construction

- List of 2k python packages, 11.5k R packages
- Obtain package update data (from PyPI and CRAN)
- Obtain over a million commits (from GitHub)


Propensity Score Matching (nn-match, no replacement)

Quarterly snapshots of 1610 Python, 1610 R packages

Commits Data Available: 1089 Python, 1077 R packages

Parallel Trends

Relative Time Model (Autor 2003)

Event Study Plot for treated and control packages. Y-axis is the logged value of the version released.

Type of Contribution

Challenge: No Standardized Categorization of Commits

Solution: Commits come with text comments

- ➤ Added ability to extract span attributes from falcon request objects. (#1158)
- ► Run one test on travis with --develop to avoid regressions
- Fix wrong file driver version error

Type of Contribution

Step 1: Determine the General Categories

Open classification of 500 Python and 500 R comments using GPT 4

RA combined them into similar categories. Total 5

Verify if GPT 4 correctly reclassifies 1000 comments into the 5 categories.

Step 3: Use GPT-3.5 Turbo to categorize million commits

Code <u>Development</u>

Maintenance

Testing and QA

Documentation

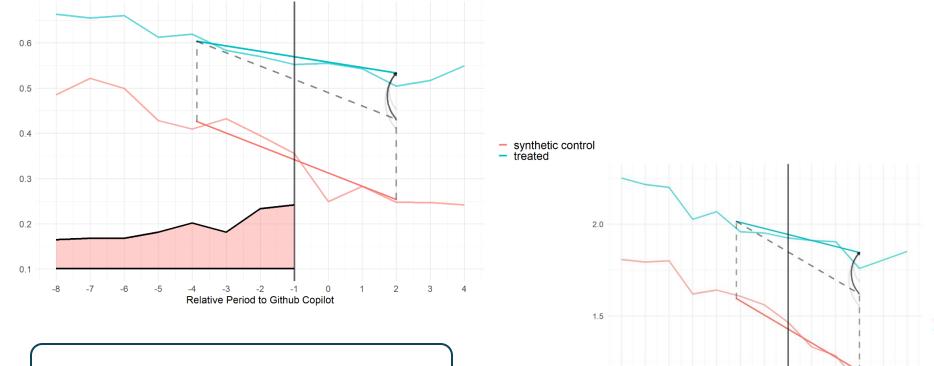
Others

Details about the categorization is in our paper

RQ1: Volume of Open-Source Innovation

Identification: Propensity Score Matching with Difference-in-

Differences


Dataset: PSM matched Dataset

$$log(y_{it}+1) = \alpha_i + \gamma_t + \beta X \ PythonPackage_i \ X \ After Adoption_t + \epsilon_{it}$$


Dependent Variables:

Count of the new version of the package in a quarter Count of commits committed in a package in a quarter **Alternative Identification:** Synthetic Difference in Differences

Results: Volume of Open-Source Innovation

Package Update: 9% increase

Commits: 33.1% increase

Findings So Far

RQ1: How do LLMs affect the **volume** of open-source innovation?

Significantly enhances commits and package releases

RQ2: How do LLMs affect the **type** of innovation in open-source?

Origination Tasks

Iterative Tasks

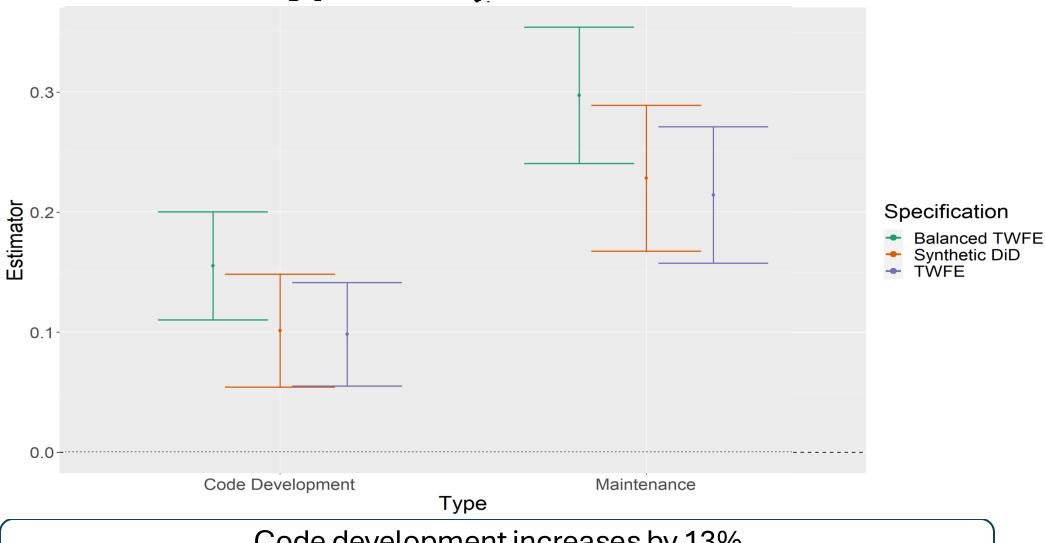
RQ2: "Nature" of the Open-source Innovation

Code Development

- > Feature Development
- Code Optimization
- > Implementing Algorithms

Vague Scope and Solution Space

Out-of-the-Box thinking Preferred


Maintenance

- Bug Fixes
- Code Cleanup
- Dependency Update

Well-defined Scope and Solution Space

Within-the-Context thinking Preferred

Results: Type of Open-source Innovation

Code development increases by 13% Maintenance increases by 24%

Findings So Far

RQ1: How do LLMs affect the **volume** of open-source innovation?

Significantly enhances commits and package releases

RQ2: How do LLMs affect the **type** of innovation in open-source?

- Significantly higher maintenance commits
- LLMs understand others' work → Benefit *Iterative Tasks*

Extension: What value do our results have if LLMs gets better? (assumption: Better LLMs \rightarrow enhanced utilization of context)

Study differential Impact on Projects based on their "activities"

RQ3: Distribution of Innovation across Packages

Model: Modify TWFE to include a DDD specification

Dataset: PSM matched Dataset

Dependent Variables:

Count of the new version of the package in a quarter Count of commits committed in a package in a quarter

Results: Distribution of Innovation

	Above Median Packages		Below Median Packages	
Dependent variable – log(<i>NewCommits_{it}+1)</i>	(1) TWFE	(2) Balanced TWFE	(3) TWFE	(4) Balanced TWFE
PythonPackage; X afterAdoption _t	0.307***	0.248***	0.28	0.022
	(0.039)	(0.042)	(0.017)	(0.019)
PythonPackage _i X afterAdoptioni	0.199***	0.164***	0.08***	0.095***
X Category_Maintenance _i	(0.031)	(0.035)	(0.020)	(0.022)
Time Fixed Effect	YES	YES	YES	YES
Package Fixed Effect	YES	YES	YES	YES
# of Observations	26072	21,424	26,784	23,478

Code development commits are **higher**, but Maintenance commits are **even higher** for Popular packages

Summary

The key take-away

LLMs boost outcomes for tasks requiring *inside-the-box* (*interpolative*) solutions, rather than *out-of-the-box* (*extrapolative*) solutions. This difference is likely to stay even if LLMs become better over time.

Thank You

raveesh@stern.nyu.edu

www.raveeshmayya.com

